

1
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

VC++ UDF Studio 2024R2 Tutorial Open Chinese Version

Contents

1. Supported Platform Software Versions ... 2

2. Academic Version vs. Enterprise Version ... 2

3. Important Notes on Platform Software Installation .. 3

3.1. Notes on Visual Studio Installation .. 3

3.2. Notes on Intel Visual Fortran Installation .. 6

3.3. Notes on Matlab Installation .. 7

4. Basic steps of UDF Compilation and debug ... 8

5. Basic steps of Calling CoolProp ... 15

6. Basic steps of Calling Intel Fortran ... 16

7. Basic steps of Calling Matlab ... 20

8. Set up 3rd-Party Directories (Enterprise Version Only) .. 24

9. SuperUDF Extension Library ... 25

8.1. Enable SuperUDF Extension Library .. 25

8.2. Extension Library Function List .. 25

8.3. Extension Library Function Example .. 27

10. Tips .. 28

11. How to Register .. 29

Tutorial_cn.pdf

2
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

1. Supported Platform Software Versions

Table 1. Supported platform software versions

Platform versions Support or not

WinXP~Win11 (x86/x64)

Fluent 6.3~2024R2(x86/x64)

Visual Studio 2010~2019 (Chs. or Eng. Except Express edition)

Visual Studio 2022 or higher

Intel Visual Fortran 2011~2018 (Optional to install)

Matlab2014a ~2021b (Optional to install)

* Win10 + Visual Studio 2015 Community+ Fluent 17.0 (or higher) are recommended

2. Academic Version vs. Enterprise Version

Table 1. Capabilities of academic version vs. enterprise version

Capabilities
Academic Version Enterprise Version

Trial Registered Trial Registered

Compile and debug

(serial, single precision)

max. 1 macros

No serial trial for Fluent2022R2

or higher version

unlimited

max. 1 macros

No serial trial for Fluent2022R2

or higher version

unlimited

Compile and debug

(serial, double precision)

Compile and debug

(parallel, single/double precision)

1-core parallel trial for

Fluent2022R2 or higher

1-core parallel trial for

Fluent2022R2 or higher

Call C++/Win32 API/MFC functions

Get zone ID from name by UDF

Interrupt iteration by UDF

2d, 3d serial only

unlimited

2d, 3d serial only

unlimited

Call 3rd-party library

Set 3rd-party library folders
max. 1 folder

unlimited

Add user menu in Fluent

max. 2 submenus

unlimited

Drive Fluent to iterate by UDF

max. 1 iteration

unlimited

Call Scheme/TUI by UDF

Start by Workbench

Call CoolProp functions

(optional to purchase)

max. 1 funcion

unlimited

max. 1 funcion

unlimited

Call Fortran procedures

(optional to purchase)

max. 1 procedure

unlimited

max. 1 procedure

unlimited

Call Matlab functions

(optional to purchase)

max. 1 function

matrix argument forbidden

dynamic link forbidden

unlimited

max. 1 function

matrix argument forbidden

dynamic link forbidden

unlimited

3
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

3. Important Notes on Platform Software Installation

3.1. Notes on Visual Studio Installation

1. Visual C# is recommended to be installed along with Visual C++, though it is not necessary

for some Visual Studio versions. But for VS2010, installation of Visual C# is a must.

Otherwise, error will occur when starting Visual Studio.

Besides, you have to install 64bit Fluent and assure that “X64 compilers and Tools” will

be installed for 64 bit Windows.

2. If you prefer Visual Studio 2013, please install the latest Visual Studio 2013 update5. Errors

may occur if using other earlier 2013 version, such as “cannot open include file

‘afxv_cpu.h’” or even chaos in VC++UdfStudio menu.

4
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

Secondly, please first assure the internet connection during installation. Otherwise,

“WindowSDKDir” variable may be lost as following figure shows.

Last of all, please download and install “Visual C++ MFC Multi-Byte-Character-Set

Library” first for Visual Studio 2013.

Website: https://www.microsoft.com/en-US/download/details.aspx?id=40770

Otherwise, following error will occur if using Visual Studio 2013.

3. If you choose Visual Studio 2015, please install “Microsoft Foundation Classes for C++”

component.

https://www.microsoft.com/en-US/download/details.aspx?id=40770

5
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

4. If you choose to use Visual Studio 2017 or 2019, please check “Desktop development with

C++” component and its sub-module “C++ MFC for x86 & x64”.

6
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

3.2. Notes on Intel Visual Fortran Installation

1. If you want to try the “calling Intel Fortran” capability (or you have purchased this function),

then you need to install Intel Visual Fortran besides Visual Studio. The supported versions are

listed in table 1. Note that 32/64 bit Fortran compiler should be consistent with the FLUENT

architecture (32 or 64bit). For example, if you are using 64bit Fluent, then please install 64bit

Fortran compiler.

2. Intel Visual Fortran has become a component of Intel Parallel Studio XE package in later

version. When selecting customized installation, please check the “Intel Visual Fortran

Compiler” option. Others can be chosen as you want.

7
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

3. In addition, “Integration into Microsoft Visual Studio” should be checked according to the

Visual Studio version you installed. Note, Visual Studio may have to be installed first before

this step.

3.3. Notes on Matlab Installation

1. If you want to try the “calling Matlab” capability (or you have purchased this function), then

you need to install Matlab besides Visual Studio. The supported versions are listed in table 1.

Note that “MATLAB Coder” and “MATLAB Compiler” installation is a must besides

“Matlab” istself, while others are optional.

8
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

4. Basic steps of UDF Compilation and debug

1. Install Visual Studio first. Assure "Visual C#", "Visual C++" and “Visual C++ Tools”

checked when selecting Visual Studio components to be installed (See previous section

"Notes on Visual Studio Installation” for detailed requirements).

2. Next, install “VC++ UDF Studio” package. Note: Please install Visual Studio before

installing “VC++ UDF Studio” because “VC++ UDF Studio” will search all the existing

Visual Studio versions and do some settings accordingly.

3. Start the “VC++ UDF Studio” launcher, and select the FLUENT version and VC version

you’d like to use and click “OK”. Click the "Browse" button to select a FLUENT installation

directory whose corresponding version is not in the list.

9
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

4. Read a Fluent case then click “Start Visual Studio” menu and begin to code UDF.

5. “VC++ UDF Studio” toolbar and menu will be shown in the Visual Studio. In the meantime,

a folder called “source” will be created in the case directory containing all the source codes.

10
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

If the UDF source “udf_source.cpp” file does not exist in the “source” folder, a demo

file will be created for you. If “udf_source.cpp” file exists in the “source” folder, then it will

be opened directly.

Project files “*.vcxproj” will be auto deleted when Visual Studio closes. Therefore,

please never change the project settings. If you want to link additional library "XXX.lib", you

can add #pragma comment(lib, "XXX.lib") in “udf_source.cpp”.

Note: All project files and intermediate folders (e.g., *.sln, *.suo, *.vcproj, *.vcxproj, *.user,

*.filters, *.ncb, *.sdf, Debug folder, Release folder) will be auto deleted after Visual

Studio closed EXCEPT necessary source files, such as udf_source.cpp, for_source.f90

and *.m.

6. Edit UDF source code. Add following test code to the end of “udf_source.cpp” file. (If you

are using trial version, please delete the demo macro, i.e., DEFINE_ON_DEMAND.

Otherwise, macro over limitation error will be reported).

DEFINE_ON_DEMAND(debug)

{

 int aaa=123;

 int bbb=345;

 int ccc=aaa+bbb;

}

11
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

7. Click the “Build UDF library” button (or hotkey “F7”) to compile the UDF source.

Compiling will succeed no syntax errors found (shown in below figure). You can’t load

or debug until the source code has been successfully built.

8. Click ”Load UDF library to Fluent” button to load the library to FLUENT. Then, the

FLUENT console should show message that “libudf” library is opened.

12
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

9. The “Hook Assistant” button will be enabled after UDF library is loaded successfully. If you

have no idea about how to hook the macros, then you can click “Hook Assistant” button and

select the macro you want to show prompt. You can also skip this step if you know how to

hook the DEFINE macros in you source code.

10. Set a breakpoint before “int aaa=123;” (mouse hover on this line and press hotkey “F9”) and

press “Start debugging UDF library” button. Of course, directing clicking this button is also

OK without loading the library first. This tool will auto load the library first for you. But

anyway, UDF library must be generated successfully.

11. Execute “debug::libudf” in Fluent. Visual Studio will auto stop at the breakpoint. Now you

can watch all the variable values. Note: Some macros are only called during Fluent iteration,

such as DEFINE_SOURCE, DEFINE_PROFILE, etc. Therefore, you not only need to set the

breakpoint and push the “debug” button but also have to start Fluent iteration.

Note: Please first understand when Fluent calls the macro you want to debug. If Fluent

doesn’t call the macro, breakpoints in the macro won’t work. For example,

DEFINE_SOURCE is called during iteration and DEFINE_INIT is called when

initialization. If you have set a breakpoint in DEFINE_SOURCE but haven’t started

13
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

iteration, program won’t stop at the breakpoint.

12. Step over the code line by line (or “F10” hotkey). You can observe all variable values just in

the usual debugging way.

14
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

13. After all bugs removed, you can change from Debug to Release and re-compile it in release

mode.

14. Now, your case folder may look like below, where "libudf" folder contains the release version

of your UDF library and "source" folder stores the UDF source file "udf_source.cpp".

15. After successfully compiling your release version of UDF library, you needn't start Fluent

from VC++ UDF Studio launcher if you only want to run the case (not modify/compile UDF

source). Just start Fluent in usual way and load the UDF library by

"Define->User-Defined->Functions->Manage" menu and type "libudf" in the "Library Name"

edit box and press "Load" button. Note: Fluent version, precision and 2d/3d dimension must

be same for VC++ UDF Studio compiling and Fluent which will load the library. In addition,

default architecture in high Fluent version is parallel, while trial VC++ UDF Studio

(version<=2022R1) only can compile true Serial library, so error will report when loading.

You have to compile the library using VC++ UDF Studio registered parallel version and keep

Fluent version, precision, 2d/3d dimension same as the Fluent which will direct load the

library.

15
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

5. Basic steps of Calling CoolProp

1. Check the “Call CoolProp” Option in the launcher (Note: If you have purchased registered

version without the “Call CoolProp” feature, then this checkbox will be disabled. You can

uninstall this software and re-install it so as to recover to trial version and enable this

checkbox).

16
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

2. Click Ok to start Fluent and read a case. Then start Visual Studio from the menu (See

previous section “Basic steps of UDF Compilation and debug”). You will see that

“CoolPropLib.h” has been auto added to the project folder. What you should do is to add

#include “CoolPropLib.h” into your “udf_source.cpp” file. Then you can use CoolProp

functions in the source file “udf_source.cpp”.

6. Basic steps of Calling Intel Fortran

1. Install supported version of Intel Visual Fortran (See previous section "Notes on Intel Visual

Fortran Installation” for detailed requirements).

2. Check the “Call Intel Fortran” Option in the launcher (Note: If you have purchased registered

version without the “Call Intel Fortran” feature, then this checkbox will be disabled. You can

uninstall this software and re-install it so as to recover to trial version and enable this

checkbox).

17
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

3. Click Ok to start Fluent and read a case. Then start Visual Studio from the menu (See

previous section “Basic steps of UDF Compilation and debug”). A new static library project

named “FortranLibrary” will be added to the solution. The user can add Fortran functions in

the source file “for_source.f90”.

4. Edit the head file “FortranInterface.h” according to the functions in “for_source.f90”. This

head file should include the C declaration of the Fortran functions to be called. Table 3 is an

example of Fortran and C/C++ corresponding common types. Note that the Fortran

arguments should be called by reference. Therefore, the C declaration corresponds to pointer

type. For example the demo Fortran source:

SUBROUTINE ADD(S1, S2, SUM)

 REAL::S1, S2

REAL::SUM

Corresponding C declaration is:

void add(real*s1, real*s2, real*sum);

18
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

Table 3. Fortran and C/C++ common corresponding types

FORTRAN C/C++

byte unsigned char

integer*2 short int

integer long int or int

integer iabc(2,3) int iabc[3][2];

logical long int or int

logical*1 bool (C++, one byte)

real float (can be real type in Fluent UDF)

real*8 double (can be real type in Fluent UDF)

real*16 long double

complex struct{float realnum; float imagnum;}

double complex struct{double dr; double di;}

character*6 abc char abc[6];

character*6 abc(4) char abc[4][6];

parameter #define PARAMETER value

5. Add #include “FortranInterface.h” to udf_source.cpp file so that Fortran functions can be

called.

19
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

6. Click the “build” button to compile. If you have installed multiple Intel Fortran versions, then

you can set the ready-to-use version in Tools->Options->Intel(R) Visual Fortran menu.

20
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

7. Basic steps of Calling Matlab

1. Install supported version of Matlab (See previous section "Notes on Matlab Installation” for

detailed requirements).

2. Check the “Call Matlab” Option in the launcher and select the Matlab version to use (Note: If

you have purchased registered version without the “Call Matlab” feature, then this checkbox

will be disabled. You can uninstall this software and re-install it so as to recover to trial

version and enable this checkbox). In addition, if you are changing the Matlab version that

has been called before, please run the launcher as administrator.

3. Select “Static link” or “Dynamic link” for the sub-option. The difference between them is

that UDF library generated by “Static link” mode will not depend on Matlab runtime library.

But “Static link” mode does not support some Matlab functions, such as GridData, ode45,

plot, eval, etc. In these cases, you can turn to “Dynamic link” mode, which supports almost

all the Matlab functions. The only shortcoming is that if you plan to run the generated UDF

library on another machine, then the corresponding version of Matlab runtime library must be

installed. Fortunately, there is no need to do so on local machine which is using

VC++UDFStudio tool because the Matlab package has been installed.

Note: The “Dynamic link” mode is disabled in trial version until you purchase the software.

Another known issue is that some Fluent versions may conflict with some Matlab versions in

“Dynamic link” mode, which will result in MatlabLibraryInitialize function failure. In this

case, you can install Fluent 2023R2 with Matlab2018b, which passed our test without

confliction.

4. Click Ok to start Fluent and read a case. Then start Visual Studio from the menu (See

previous section “Basic steps of UDF Compilation and debug”). A new toolbar button

“Convert .m files to C/C++” and a new static library project named “MatlabLibrary” will be

shown for the solution. The user can add Matlab functions in the folder “Matlab M-files”.

Note that the MatlabFunctionTester.m file is designed to debug Matlab functions in Matlab

environment, which cannot be deleted (detailed operations will be introduced later).

21
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

5. Right click on the “Matlab M-files” folder so as to add new m file, i.e, new Matlab function

(because Matlab requires separate file for each function).

22
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

6. Right click on m file/files and select “Open with Matlab” so that the user can debug Matlab

functions that are called by “MatlabFunctionTester.m” in Matlab. After removing all bugs,

close Matlab.

23
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

7. Click the “Convert .m files to C/C++” toolbar button in order to convert Matlab functions

(except the MatlabFunctionTester.m file) to C/C++ files. Note that warning will be shown if

the Matlab function is not supported in “Static link” mode after trying several minutes’

conversion.

8. (Only in “Static link” mode) Select type for each function arguments in the comboboxes.

Default type is scalar float, not matrix. If you want to specify matrix type, please click the

“Matrix…” button to set matrix dimensions in the dialog. Check the dynamic box if the size

is dynamic. Click OK to convert.

9. If conversion succeeds, the software will auto add the generated C/C++ files to

“Generated-Files” folder. All the Matlab function declarations are in the MatlabLibrary.h file.

Note: For “Static link” mode, please remember to add #include "MatlabLibrary.h" in the

extern “C” declaration of UDF source file “udf_source.cpp” before calling any Matlab

function. But for “Dynamic link” mode, please add #include "MatlabLibrary.h" outside of

extern “C” declaration.

24
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

10. Click “Build UDF library” toolbar button to compile the UDF library. Later operations can be

found in previous section “Basic steps of UDF Compilation and debug”.

8. Set up 3rd-Party Directories (Enterprise Version Only)

1. You can use below buttons to set 3rd-party header directories and library directories.

2. Below two figures show the dialogs after pushing these buttons. Additional 3rd-party header

directories and library directories can be added by manual input or browse.

$(Build-in_UDF_Include_Directories) and $(Build-in_UDF_Library_Directories) represent

the necessary header directories and library directories required by VC++ UDF Studio. They

are forbidden to be modified, only allowed to be moved their relative positions with

additional 3rd-party directories.

25
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

9. SuperUDF Extension Library

8.1. Enable SuperUDF Extension Library

1. This tool has packed some useful functions in the form of 3rd-party library for users’

convenient calling. As below figure shows, the user just needs to remove the comments of

following line.

#include "SuperUdfExtension.h"

8.2. Extension Library Function List

1. void SuperUdf_Initialize(HMODULE hLibudfDllModule)

This function is used for the SuperUdf library initialization, where “hLibudfDllModule” is the module

handle of udf library. You can use AfxGetInstanceHandle() to get it (see the example in next section).

Note：This function has to be called before other SuperUdf extension functions. The best place to call it is in

the “DEFINE_EXECUTE_ON_LOADING” macro.

2. int SuperUdf_GetZoneIdByName(char* strZoneName)

Get zone ID according to zone or boundary name. For example the case in below figure, if we call

SuperUdf_GetZoneIdByName(“outlet”), the function will return 2.

26
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

This function is mainly used to improve the robustness of UDF source code. As we know,

LookUp_Thread(domain, zone_ID) is the common way to get Thread, where zone_ID is a key parameter.

However, it will change with the input mesh. Many users have to inquire the zone ID manually and

revise/recompile the UDF source code each time the input mesh changes, which is very inconvenient. After using

this function, we can set a fixed name for the zone when we draw the mesh and thus the UDF source code needn’t

be changed anymore.

Note：This function can only be called on serial or host. It will return -1 on node. A workaround is that we

can call it on serial or host and then call host_to_node_int to send the value to node.

3. void SuperUdf_Interrupt()

This function is used to interrupt steady or unsteady iteration. You can put this function in

DEFINE_ADJUST or DEFINE_EXECUTE_AT_END so that you can call this function to stop the iteration when

your criterion reaches.

4. HWND SuperUdf_GetFluentMainWnd();

Get the handle of Fluent main window (Enterprise version only, see programming guide).

5. void SuperUdf_Steady_Iterate(int nTimes)

Drive Fluent to iterate n steps in steady case (Enterprise version only, see programming guide).

6. void SuperUdf_ExecuteConsoleCommand(char* strAnsiConsoleCommand)

Drive Fluent to perform TUI or scheme command (Enterprise version only, see programming guide).

7. void SuperUdf_AddUserMenu(UINT uMenuResourceID)

Insert user menu in Fluent (Enterprise version only, see programming guide).

8. void SuperUdf_EnableMenuItem(UINT uTargetMenuID, BOOL bEnabled)

Enable or disable user menu item (Enterprise version only, see programming guide).

ProgrammingGuide_en.pdf
ProgrammingGuide_en.pdf
ProgrammingGuide_en.pdf
ProgrammingGuide_en.pdf
ProgrammingGuide_en.pdf

27
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

9. void SuperUdf_SetMenuBmpAndFun(MenuItemBmpAndFun menuBmpAndFuns[], ULONG nCount)

Set the bitmaps and click action functions (Enterprise version only, see programming guide).

10. void SuperUdf_SetMenuSelectCallBack(MENUSELECTPROC UserCallBackFunction)

Set the call back function of select menu. Menu items can be dynamically disabled or enabled in the call

back function (Enterprise version only, see programming guide).

8.3. Extension Library Function Example

Below is an example of extended functions in academic version (Enterprise version extended function

example is shown in programming guide).

#include "udf.h"

#include "SuperUdfExtension.h"

DEFINE_ON_DEMAND(GetOutletId)

{

 int outlet_id;

 face_t f;

 Thread*tf;

 Domain*domain=Get_Domain(1);

#if !RP_NODE

 outlet_id=SuperUdf_GetZoneIdByName("outlet"); //get the id of zone whose name is "outlet"

#endif

 host_to_node_int_1(outlet_id);

#if !RP_HOST

 if(-1==outlet_id)

 Message("Can't get the ID on myid=%d\n",myid);

 else

 {

 tf=Lookup_Thread(domain, outlet_id);

 Message("myid=%d, outlet id=%d\n",myid, outlet_id);

 begin_f_loop(f,tf)

 {

 if(PRINCIPAL_FACE_P(f,tf))

 {

 // loop over faces on "outlet"

 }

 }

 end_f_loop(f,tf)

 }

#endif

}

DEFINE_EXECUTE_ON_LOADING(load,libudf)

{

 SuperUdf_Initialize(AfxGetInstanceHandle());

}

ProgrammingGuide_en.pdf
file:///E:/project/VC_UDF_Studio/22.1SP3/ProgrammingGuide_en.pdf
ProgrammingGuide_en.pdf

28
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

10. Tips

1. “Visual assistant” (www.wholetomato.com) is highly recommended to install, which has a lot

of extended functions (such as code completion, braces matching, user-defined keyword

colors).

2. VC++UdfStudio menu in Fluent can be loaded or unloaded by TUI command udf-vc++/load

or udf-vc++/unload

http://www.wholetomato.com/

29
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

11. How to Register

1. Open launcher and click "Register" menu.

2. Input your username and leave the "Code" text box empty. Check the optional features you

want to purchase (call Intel Fortran or call Matlab) then click OK. All your user name and

hardware information will be put into the text file “user.ini”.

3. Contact vcUdfStudio@outlook.com (International) or vcUdfStudio@sohu.com (China) and

pay for the software. Then send the “user.ini” file as the email attachment. After receiving

returned email with register code, run the Launcher as administrator and click "Register"

menu again. Input the user name and register code and all functions are available now (Note

that after successful registration, corresponding feature will be disabled if you haven’t

purchased “call Intel Fortran” or “call Matlab” feature. You can uninstall this software and

mailto:vcUdfStudio@outlook.com
file:///E:/project/VC_UDF_Studio/19.4/source/vcUdfStudio@sohu.com

30
More information at https://vcUdfStudio.github.io. To register or report bugs vcUdfStudio@sohu.com (China), vcUdfStudio@outlook.com (International)

re-install it so as to recover to trial version and try these features).

